Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38133052

RESUMO

The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 µg mL-1 in zebrafish.

2.
Nanoscale ; 15(35): 14409-14422, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37614145

RESUMO

Despite the great effort made in recent years on lanthanide-based ratiometric luminescent nanothermometers able to provide temperature measurements in water, their design remains challenging. We report on the synthesis and properties of efficient ratiometric nanothermometers that are based on mesoporous stellate nanoparticles (MSN) of ca. 90 nm functionalized with an acetylacetonate (acac) derivative inside the pores and loaded with ß-diketonate-Tb3+/Eu3+ complexes able to work in water, in PBS or in cells. Encapsulating a [(Tb/Eu)9(acac)16(µ3-OH)8(µ4-O)(µ4-OH)] complex (Tb/Eu ratio = 19/1 and 9/1) led to hybrid multifunctionalized nanoparticles exhibiting a Tb3+ and Eu3+ characteristic temperature-dependent luminescence with a high rate Tb3+-to-Eu3+ energy transfer. According to theoretical calculations, the modifications of photoluminescence properties and the increase in the pairwise Tb3+-to-Eu3+ energy transfer rate by about 10 times can be rationalized as a change of the coordination number of the Ln3+ sites of the complex from 7 to 8 accompanied by a symmetry evolution from Cs to C4v and a slight shortening of intramolecular Ln3+-Ln3+ distances upon the effect of encapsulation. These nanothermometers operate in the 20-70 °C range with excellent photothermal stability, cyclability and repeatability (>95%), displaying a maximum relative thermal sensitivity of 1.4% °C-1 (at 42.7 °C) in water. Furthermore, they can operate in cells with a thermal sensitivity of 8.6% °C-1 (at 40 °C), keeping in mind that adjusting the calibration for each system is necessary to ensure accurate measurements.

3.
Nanoscale ; 14(42): 15617-15634, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36070553

RESUMO

The synthesis of multifunctional poly(amidoamine) (PAMAM)-based dendrimers containing a cleavable disulfide linker within each arm of the dendrimer, together with condensable triethoxysilyl groups on the periphery of the dendrimer, is described. The dendrimers were mixed with 1,4-bis(triethoxysilyl)benzene and subsequently transformed into silsesquioxane gels or periodic mesoporous organosilicas (PMOs) to generate materials with dendrimers covalently embedded within the interior of the silsesquioxane networks. Subsequent treatment of the gels with dithiothreitol enabled the core of the dendrimers to be selectively cleaved at the disulfide site, thus generating thiol functions localised within the pores. The effect of different dendrimer generations on the reactivity of the pendant thiol functions was probed by impregnation with gold salts, which were reduced to obtain gold nanoparticles within the pore networks of the gels and PMOs. The gels yielded polydisperse gold nanoparticles (2 to 70 nm) with dimensions modulated by the generation of the dendrimer, together with well-defined gold/thiolate clusters with Au⋯S distances of 2.3 Å. Such clusters were also observed in the PMO system, together with monodispersed gold nanoparticles with diameters comparable to that of the organised pores in the PMO. The role of surface functionalisation in controlling the formation of gold clusters and/or nanoparticles is discussed.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144897

RESUMO

Multifunctional nano-objects containing a magnetic heater and a temperature emissive sensor in the same nanoparticle have recently emerged as promising tools towards personalized nanomedicine permitting hyperthermia-assisted treatment under local temperature control. However, a fine control of nano-systems' morphology permitting the synthesis of a single magnetic core with controlled position of the sensor presents a main challenge. We report here the design of new iron oxide core-silica shell nano-objects containing luminescent Tb3+/Eu3+-(acetylacetonate) moieties covalently anchored to the silica surface, which act as a promising heater/thermometer system. They present a single magnetic core and a controlled thickness of the silica shell, permitting a uniform spatial distribution of the emissive nanothermometer relative to the heat source. These nanoparticles exhibit the Tb3+ and Eu3+ characteristic emissions and suitable magnetic properties that make them efficient as a nanoheater with a Ln3+-based emissive self-referencing temperature sensor covalently coupled to it. Heating capacity under an alternating current magnetic field was demonstrated by thermal imaging. This system offers a new strategy permitting a rapid heating of a solution under an applied magnetic field and a local self-referencing temperature sensing with excellent thermal sensitivity (1.64%·K-1 (at 40 °C)) in the range 25-70 °C, good photostability, and reproducibility after several heating cycles.

5.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630556

RESUMO

A green and effective approach for the synthesis of structurally diversed α-hydroxyphosphonates via hydrophosphonylation of aldehydes under solventless conditions and promoted by biosourced catalysts, called ecocatalysts "Eco-MgZnOx" is presented. Ecocatalysts were prepared from Zn-hyperaccumulating plant species Arabidopsis halleri, with simple and benign thermal treatment of leaves rich in Zn, and without any further chemical treatment. The elemental composition and structure of Eco-MgZnOx were characterized by MP-AES, XRPD, HRTEM, and STEM-EDX techniques. These analyses revealed a natural richness in two unusual and valuable mixed zinc-magnesium and iron-magnesium oxides. The ecocatalysts were employed in this study to demonstrate their potential use in hydrophosphonylation of aldehydes, leading to various α-hydroxyphosphonate derivatives, which are critical building blocks in the modern chemical industry. Computational chemistry was performed to help discriminate the role of some of the constituents of the mixed oxide ecocatalysts. High conversions, broad substrate scope, mild reaction conditions, and easy purification of the final products together with simplicity of the preparation of the ecocatalysts are the major advantages of the presented protocol. Additionally, Eco-MgZnOx-P could be recovered and reused for up to five times.


Assuntos
Arabidopsis , Magnésio , Aldeídos/química , Catálise , Folhas de Planta , Zinco
6.
RSC Adv ; 11(18): 10777-10784, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423553

RESUMO

The synthesis through click chemistry of triethoxysilylated cyclen derivative-based ligands is described. Different methods were used such as the copper catalyzed Huisgen's reaction, or thiol-ene reaction for the functionalization of the cyclen scaffold with azidopropyltriethoxysilane or mercaptopropyltriethoxysilane, respectively. These ligands were then grafted on magnetic mesoporous silica nanoparticles (MMSN) for extraction and separation of Ni(ii) and Co(ii) metal ions from model solutions. The bare and ligand-modified MMSN materials revealed high adsorption capacity (1.0-2.13 mmol g-1) and quick adsorption kinetics, achieving over 80% of the total capacity in 1-2 hours.

7.
Chem Commun (Camb) ; 55(77): 11619-11622, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501844

RESUMO

Mesoporous organosilica nanoparticles (PHT-PMO) have been prepared from an octa-triethoxysilylated Zn phthalocyanine precursor. These PHT-PMO nanoparticles had no dark toxicity but high phototoxicity when irradiated at 650 nm, and remarkable near-infrared phototoxicity when excited at 760 and 810 nm. The PHT-PMO were then aminated to promote electrostatic complexation with siRNA. Transfection experiments were performed upon NIR irradiation and photochemical internalization was very efficient, leading to 65% luciferase extinction in MCF-7 cancer cells expressing stable luciferase.


Assuntos
Indóis/química , Nanopartículas/química , Compostos Organometálicos/química , Fotoquimioterapia/métodos , RNA Interferente Pequeno/química , Silanos/química , Sobrevivência Celular , Cetrimônio/química , Humanos , Raios Infravermelhos , Isoindóis , Luciferases/genética , Células MCF-7 , Processos Fotoquímicos , Porosidade , RNA Interferente Pequeno/metabolismo , Eletricidade Estática , Propriedades de Superfície , Compostos de Zinco
8.
Micron ; 101: 16-24, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28586698

RESUMO

Beetle elytra are thickened forewings, they are lightweight and tough to protect the hindwings without hindering flight capacities. Dynastes hercules elytra are known for their hygrochromic properties. However, the whole structure of the elytron remains to be characterized. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and to our knowledge for the first time X-Ray tomography were undertaken on adult male Dynastes hercules to characterize their multi-scale structure. Trabeculae present a periodic arrangement over a short distance. Two inferred models describe the heights of plies in endocuticles of dorsal and ventral cuticles. We hypothesize that this study could provide inspiration for biomimetic materials.


Assuntos
Besouros/ultraestrutura , Asas de Animais/ultraestrutura , Animais , Biometria , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tomografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...